Baer S. et.al. (2021) Growth charts in Cockayne syndrome type 1 and type 2. Eur J Med Genet. 64(1):104105 Pubmed
Ribeiro-Silva C. et. al. (2020) Ubiquitin and TFIIH-stimulated DDB2 dissociation drives DNA damage handover in nucleotide excision repair. Nat. Commun. 11:4868 Pubmed
Ragamin A, et al. (2020) Human RAD50 deficiency: Confirmation of a distinctive phenotype. Am J Med Genet A. 1-9 Pubmed
Lans H. et. al. (2019) The DNA damage response to transcription stress. Nature Reviews Mol. Cell Biol. 20:766-784. Pubmed
Kuo M.E. & Theil A.F. et. al. (2019). Cysteinyl-tRNA Synthetase Mutations Cause a Multi-System, Recessive Disease That Includes Microcephaly, Developmental Delay, and Brittle Hair and Nails. Am J Hum Genet. pii: S0002-9297 Pubmed
Theil A.F. & Botta E. et. al. (2019) Bi-allelic TARS Mutations Are Associated with Brittle Hair Phenotype. Am J Hum Genet. 105:434-440 Pubmed
Menoni H & Wienholz F et. al. (2018) The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage. Nucleic Acids Res. Pubmed
Ribeiro-Silva C. et. al. (2018). DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat. Commun. 9:4067 Pubmed
Sabatella M. et. al. (2018). Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 12;46(18):9563-9577. Pubmed
Theil A.F. et. al. (2017). Trichothiodystrophy causative TFIIEβ mutation affects transcription in highly differentiated tissue. Hum Mol Genet. Dec 1;26(23):4689-4698. Pubmed
Vermeij W.P. et.al. (2016) Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 537(7620), 427-31 Pubmed
Marteijn JA, Hoeijmakers JH, Vermeulen W (2015) Check, Check …Triple Check: Multi-Step DNA Lesion Identification by Nucleotide Excision Repair. Mol Cell 59:885-6 Pubmed
Tresini M. et al (2015). The core spliceosome as target and effector of non-canonical ATM signaling. Nature. 2;523(7558):53-8. Pubmed
Raj D.D. et.al. (2014) Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiol. Aging. 35(9), 2147-60 Pubmed
Barnhoorn S, et.al. (2014) Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet. 10(10), e1004686 Pubmed
Jaarsma D, et.al. (2013) Cockayne syndrome pathogenesis: lessons from mouse models. Mech Ageing Dev. 134(5-6), 180-95 Pubmed
Jaarsma D, et.al. (2011) Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet. 7(12), e1002405 Pubmed
Borgesius N.Z. et.al. (2011) Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair. J Neurosci. 31(35), 12543-53 Pubmed
De Waard M.C. et.al. (2010) Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathol. 120(4), 461-75 Pubmed